Matrizes
Uma disposição retangular dos elementos de um corpo
$$\begin{bmatrix} 1 & -7 & \pi \\ -2 & 0.5 & 0 \\ 2 & 3 &
1/3\end{bmatrix}$$
Exemplos
$$\begin{bmatrix} 1 & -7 & \pi \\ -2 & 0.5 & 0 \\ 2 & 3 &
1/3\end{bmatrix} \qquad \begin{bmatrix}1 & 4 &
-1\end{bmatrix}\qquad \begin{bmatrix}1 \\ -5 \\ e\end{bmatrix} $$
Notação
Letras maiúsculas $A_{\textcolor{magenta}{n} \times
\textcolor{cyan}{m}}$
$\textcolor{magenta}{n}$ quantidade de linhas
$\textcolor{cyan}{m}$ quantidade de colunas
Matriz Genérica
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2m}\\ a_{31} & a_{32} &
a_{33} & \cdots & a_{3m}\\ \vdots & \vdots & \vdots & \ddots &
\vdots\\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm}\\
\end{bmatrix}$$
Elementos
São os componentes da matriz
$a_{\textcolor{magenta}{i}\textcolor{cyan}{j}}$ indica o elemento
na linha $\textcolor{magenta}{i}$ coluna $\textcolor{cyan}{j}$
Nomenclatura
- O tamanho são os números de linhas e colunas
- Só uma linha é matriz linha
- Só uma coluna é matriz coluna
-
Vetores serão sempre matrizes colunas
Igualdade
$A$ e $B$ são iguais se tem:
- mesmas linhas
- mesmas colunas
- mesma ordem pra tudo
Transposta
transpor uma matriz é trocar linhas por colunas
$$A = \begin{bmatrix}\textcolor{magenta}{1} &
\textcolor{magenta}{2} & \textcolor{magenta}{3} &
\textcolor{magenta}{4}\\ \textcolor{cyan}{5} & \textcolor{cyan}{6}
& \textcolor{cyan}{7} & \textcolor{cyan}{8}\\ \textcolor{blue}{9}
& \textcolor{blue}{10} & \textcolor{blue}{11} &
\textcolor{blue}{12}\end{bmatrix}$$
$$A^T = \begin{bmatrix} \textcolor{magenta}{1} &
\textcolor{cyan}{5} & \textcolor{blue}{9}\\ \textcolor{magenta}{2}
& \textcolor{cyan}{6} & \textcolor{blue}{10}\\
\textcolor{magenta}{3} & \textcolor{cyan}{7} &
\textcolor{blue}{11}\\ \textcolor{magenta}{4} &
\textcolor{cyan}{8} & \textcolor{blue}{12} \end{bmatrix}$$
Observações
${(A^T)}^T = A$
${(A + B)}^T = A^T + B^T$
Multiplicação Matricial
$$A_{\textcolor{magenta}{n} \times \textcolor{cyan}{p}}
B_{\textcolor{cyan}{p} \times \textcolor{blue}{m}} =
C_{\textcolor{magenta}{n} \times \textcolor{blue}{m}}$$
$$c_{ij} = \sum_{k = 1}^p a_{ik} \cdot b_{kj}$$
Exemplo
$$ \begin{bmatrix} \textcolor{magenta}{1} & \textcolor{magenta}{2}
& \textcolor{magenta}{3} & \textcolor{magenta}{4}\\ 6 & 7 & 8 &
9\\ 11 & 12 & 13 & 14 \end{bmatrix} \begin{bmatrix}
\textcolor{cyan}{1} & 5\\ \textcolor{cyan}{2} & 6\\
\textcolor{cyan}{3} & 7\\ \textcolor{cyan}{4} & 8 \end{bmatrix} =
\begin{bmatrix} \textcolor{red}{c_{11}} & c_{12}\\ c_{21} &
c_{22}\\ c_{31} & c_{32} \end{bmatrix} $$
$$ c_{\textcolor{magenta}{1}\textcolor{cyan}{1}} =
\textcolor{magenta}{1} \cdot \textcolor{cyan}{1} +
\textcolor{magenta}{2} \cdot \textcolor{cyan}{2} +
\textcolor{magenta}{3} \cdot \textcolor{cyan}{3} +
\textcolor{magenta}{4} \cdot \textcolor{cyan}{4} = 30 $$
Exemplo
$$ \begin{bmatrix} \textcolor{magenta}{1} & \textcolor{magenta}{2}
& \textcolor{magenta}{3} & \textcolor{magenta}{4}\\ 6 & 7 & 8 &
9\\ 11 & 12 & 13 & 14 \end{bmatrix} \begin{bmatrix} 1 &
\textcolor{cyan}{5}\\ 2 & \textcolor{cyan}{6}\\ 3 &
\textcolor{cyan}{7}\\ 4 & \textcolor{cyan}{8} \end{bmatrix} =
\begin{bmatrix} 30 & \textcolor{red}{c_{12}}\\ c_{21} & c_{22}\\
c_{31} & c_{32} \end{bmatrix} $$
$$ c_{\textcolor{magenta}{1}\textcolor{cyan}{2}} =
\textcolor{magenta}{1} \cdot \textcolor{cyan}{5} +
\textcolor{magenta}{2} \cdot \textcolor{cyan}{6} +
\textcolor{magenta}{3} \cdot \textcolor{cyan}{7} +
\textcolor{magenta}{4} \cdot \textcolor{cyan}{8} = 70 $$
Exemplo
$$ \begin{bmatrix} 1 & 2 & 3 & 4\\ \textcolor{magenta}{6} &
\textcolor{magenta}{7} & \textcolor{magenta}{8} &
\textcolor{magenta}{9}\\ 11 & 12 & 13 & 14 \end{bmatrix}
\begin{bmatrix} \textcolor{cyan}{1} & 5\\ \textcolor{cyan}{2} &
6\\ \textcolor{cyan}{3} & 7\\ \textcolor{cyan}{4} & 8
\end{bmatrix} = \begin{bmatrix} 30 & 70\\ \textcolor{red}{c_{21}}
& c_{22}\\ c_{31} & c_{32} \end{bmatrix} $$
$$ c_{\textcolor{magenta}{2}\textcolor{cyan}{1}} =
\textcolor{magenta}{6} \cdot \textcolor{cyan}{1} +
\textcolor{magenta}{7} \cdot \textcolor{cyan}{2} +
\textcolor{magenta}{8} \cdot \textcolor{cyan}{3} +
\textcolor{magenta}{9} \cdot \textcolor{cyan}{4} = 80 $$
Exemplo
$$ \begin{bmatrix} 1 & 2 & 3 & 4\\ \textcolor{magenta}{6} &
\textcolor{magenta}{7} & \textcolor{magenta}{8} &
\textcolor{magenta}{9}\\ 11 & 12 & 13 & 14 \end{bmatrix}
\begin{bmatrix} 1 & \textcolor{cyan}{5}\\ 2 &
\textcolor{cyan}{6}\\ 3 & \textcolor{cyan}{7}\\ 4 &
\textcolor{cyan}{8} \end{bmatrix} = \begin{bmatrix} 30 & 70\\ 80 &
\textcolor{red}{c_{22}}\\ c_{31} & c_{32} \end{bmatrix} $$
$$ c_{\textcolor{magenta}{2}\textcolor{cyan}{2}} =
\textcolor{magenta}{6} \cdot \textcolor{cyan}{5} +
\textcolor{magenta}{7} \cdot \textcolor{cyan}{6} +
\textcolor{magenta}{8} \cdot \textcolor{cyan}{7} +
\textcolor{magenta}{9} \cdot \textcolor{cyan}{8} = 200 $$
Exemplo
$$ \begin{bmatrix} 1 & 2 & 3 & 4\\ 6 & 7 & 8 & 9\\
\textcolor{magenta}{11} & \textcolor{magenta}{12} &
\textcolor{magenta}{13} & \textcolor{magenta}{14} \end{bmatrix}
\begin{bmatrix} \textcolor{cyan}{1} & 5\\ \textcolor{cyan}{2} &
6\\ \textcolor{cyan}{3} & 7\\ \textcolor{cyan}{4} & 8
\end{bmatrix} = \begin{bmatrix} 30 & 70\\ 80 & 200\\
\textcolor{red}{c_{31}} & c_{32} \end{bmatrix} $$
$$ c_{\textcolor{magenta}{3}\textcolor{cyan}{1}} =
\textcolor{magenta}{11} \cdot \textcolor{cyan}{1} +
\textcolor{magenta}{12} \cdot \textcolor{cyan}{2} +
\textcolor{magenta}{13} \cdot \textcolor{cyan}{3} +
\textcolor{magenta}{14} \cdot \textcolor{cyan}{4} = 120 $$
Exemplo
$$ \begin{bmatrix} 1 & 2 & 3 & 4\\ 6 & 7 & 8 & 9\\ 11 & 12 & 13 &
14 \end{bmatrix} \begin{bmatrix} 1 & 5\\ 2 & 6\\ 3 & 7\\ 4 & 8
\end{bmatrix} = \begin{bmatrix} 30 & 70\\ 80 & 200\\ 120 & c_{32}
\end{bmatrix} $$
$$ c_{32} = \textnormal{Sua vez!} $$
Matriz Notável
tem características que são bastante usadas ou aparecem com
frequência nos problemas abordados
Nomenclatura
- Diagonal
- Elementos $a_{ij}$ com $i = j$
- Abaixo da Diagonal
- Elementos $a_{ij}$ com $i > j$
- Acima da Diagonal
- Elementos $a_{ij}$ com $i < j$
Quadrada
Número de linhas e colunas iguais
Identidade
$I_n$ é a matriz quadrada de tamanho $n \times n$ em que todos os
elementos da diagonal são $1$ e fora dela são $0$
$$I_3 = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 &
1\end{bmatrix}$$
Escalar
qualquer matriz na forma $k I_n$
$$3 I_3 = \begin{bmatrix}3 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 &
3\end{bmatrix}$$
Diagonal
matriz quadrada de tamanho $n \times n$ em que todos os elementos
fora da diagonal $0$
$$\begin{bmatrix}7 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & 2\end{bmatrix}$$
$$a_{ij} = 0, \forall i \neq j$$
Triangular Superior
matriz quadrada em que todos os elementos abaixo da diagonal são
zero
$$\begin{bmatrix}7 & 2 & 0\\ 0 & 0 & \pi\\ 0 & 0 &
1\end{bmatrix}$$
$$a_{ij} = 0, \forall i > j$$
Triangular Inferior
matriz quadrada em que todos os elementos acima da diagonal são
zero
$$\begin{bmatrix}7 & 0 & 0\\ 1 & 1 & 0\\ 3 & 2 & 1\end{bmatrix}$$
$$a_{ij} = 0, \forall i < j$$
Simétrica
matriz quadrada em que $A = A^T$
$$\begin{bmatrix}1 & 2 & 3\\ 2 & \pi & 2\\ 3 & 2 &
1\end{bmatrix}$$
Ortogonais
matriz quadrada em que $A A^T = I = A^T A$
$$\begin{bmatrix}1/9 & 8/9 & -4/9\\ 4/9 & -4/9 & -7/9\\ 8/9 & 1/9
& 4/9\end{bmatrix}$$